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 SUMMARY: From 1984 stereology was added to unbiased methods and procedures, i.e., counts became more reliable studying 
morphological images in a random and uniform isotropic way. Therefore, the orientation and sectioning methods adapted to stereolo-
gical quantification are essential. A critical quantitative subject in practical pathology concerns diagnosing and classifying neoplasias. 
Pathologists evaluated different types of tumors by determining the nuclear roundness factor (NRF). NRF is calculated by the ratio 
between the nuclear radius obtained from the area and the perimeter. However, NRF is biased data because it depends on the sectioning 
orientation, nuclei shape, and section thickness. The stereology proposed an unbiased alternative to assess the nucleus from tumor cells, 
counteracting NRF quantitatively. Therefore, the volume-weighted mean nuclear volume has been used to prognostic tumors in several 
organs. In urology, this was used, for example, to study primary carcinoma of the bladder, renal and prostatic carcinomas.
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INTRODUCTION
 

 Pathologists have evaluated different types of 
tumors by determining the nuclear roundness factor (NRF) 
(Diamond et al., 1982; Mohler et al., 1988a,b), as the pros-
tate cancer (Epstein et al., 1984; Shaeffer et al., 1992), and 
other types of neoplasia (Binder et al., 1998; Simeonov & 
Simeonova, 2006; Meachem et al., 2012). 
 
 The methodology needs measurement of the nuclear 
area and perimeter. The NRF can be assessed by the ratio 
of nuclear area and perimeter or, practically, by the ratio 
between the average diameter (or radius) calculated across 
the area and perimeter. 
 
 There are different ways to assess the area and dia-
meter of nuclei, including image analysis (Mandarim-de-La-
cerda et al., 2010). However, this text will use a classical 
test system for the data acquisitions. 

Ewald Weibel and collaborators have proposed a test system 
that was at the time innovative, the M42, a frame composed 
of points and intersections, which includes 21 short lines (d) 
with test points at each end (d was designed in three stagge-
red columns and seven equidistant lines, completing 42 test 
points) (Weibel et al., 1966; Weibel, 1979) (Fig. 1). There-
fore, the test line length is calculated as 21d. Furthermore, 
an update of the former M42 test system was indicated by 
considering two consecutive frame boundaries as “forbidden 
lines,” avoiding overestimating counts (Gundersen, 1977). 
 
 Further details on the construction and design of the 
M42 test system are illustrated in Figure 1 and corresponding 
literature (Weibel et al., 1966; Mandarim-de-Lacerda, 2003; 
Mandarim-de-Lacerda & del Sol, 2017). The nuclei hitting 
the exclusion lines should not be considered. Thus, points 
(circles at d extremities) and intersections (arrowheads) 
might be counted.
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1. Determination of the nuclear profile area (AN):
  

   µm2              (1)

       

 Where PP is the number of points hitting the nuclei, 
Ap is the area of each point predefined as d2    ,  and NA is the 
number of nuclei in the known frame area.

 
2. Determination of the nuclear radius calculated by AN 
(RA):

                 µm     (2)

3. Determination of the nuclear perimeter (PN):

          µm                              (3)

AT is the test area equivalent to 36.37d2, IN represents the 
intersections of the test line and nuclei, and LT is the length 
of the test line (calculated as 21d).

4. Determination of the nuclear radius calculated by PN 
(RP):

                                        µm                         (4)

 
5. Determination of the nuclear roundness factor (NRF)
                   

            µmº             (5)
 

 The NRF must be close to unity when the cell nu-
cleus is approximately spherical. NRF values that deviate 
from unity indicate non-spherical nuclear shapes. Bizarre 
nuclear forms are present in neoplasia and are more bizarre 
the more undifferentiated the tumors are (De Benedictis et 
al., 1992; Wählby et al., 2004; Nafe et al., 2005). Therefore, 
pathologists might use NRF determination as additional data 
in diagnosing tumors.
 
  However, the nuclear profile depends on the sec-
tion orientation and thickness. The equatorial section of the 
nucleus compared to the polar section will estimate different 
sizes of the same nucleus besides the nucleus might be sphe-
rical, elliptical, or random bizarrely (Mandarim-de-Lacerda 
& del Sol, 2017). In addition, the cut orientation might add 
additional bias to the analysis (the leading cause of these 
biases is the orientation of sectioning and the not perfectly 

Fig. 1. The classical M42 test system. (A) construction plan; (B) diagram showing how to count points (open circles at the short line 
ends) and intersections (arrowheads).
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spherical nuclear form). Also, a thick section might produce 
additional bias correlating to small and prominent nuclei 
(Gundersen et al., 1983; Andersen & Gundersen, 1999). 
So, nuclear measurement can be nonreproducible, thus, a 
problem.
 
 The “volume-weighted mean nuclear volume” 
(MNV) was recommended as an unbiased alternative to 
evaluate the tumor nuclei instead of the NRF (Gundersen 
& Jensen, 1985; Gundersen, 1986; Sørensen, 1992). The 
rationale for using MNV is that the calculation of NRF 
usually does not give an accurate measure of cell nuclei. So, 
the analyses generally spent much time using microscopic 
calipers or image analysis systems without the certainty of 
nuclear measurement accuracy. 
 
 Using a logarithmic scale   built of 15 classes is 
proposed to overcome the challenges imposed by the nuclear 
shape (Fig. 2). Then, nuclei are measured using the ranges 
in classes  (Gundersen & Jensen, 1985). 

 The spacing between the rows and between the 
points should not be less than the average size of the nuclei. 
The system must be aligned through the test area marks and 
the x and y axes cross (bottom left). 
 
 The steps for data acquisition might be summarized 
as follows:

a) First, the test system should be aligned with the test area, 
starting with a random number among the mark numbers 
(defined by lottery). Next, the procedure should be re-
peated in each new image to obtain new options for the 
alignment of the test system. 

b) Sampled nuclei should be measured with the 15 classes 
logarithmic   ruler (Fig. 2) over the line of the test system, 
the path on the nucleus (in bold in Fig. 4). 

c) Although it is not necessary to transform the measures 
taken classes with the  ruler at values expressed in µm3, 
we can proceed as indicated below to make this transfor-
mation (Sorensen, 1991):

 
 

Fig. 2. Logarithmic ruler. Fifteen logarithmic classes ruler was 
proposed to measure the nucleus profile length in sampled nuclei 
(see Fig. 4) (details in Sørensen, 1991).

 Which and how many nuclei to measure? This 
question is answered by sampling the nuclei in a targeted 
test area (randomly). It was advised that at least 50 nuclei 
per group should be counted to obtain satisfactory MNV 
results (Gundersen & Jensen, 1985). 

 In this method, the test area shows marks on the 
upper and right sides [construction details are provided in the 
reference (Sørensen, 1991)], which help align a test system 
with points (possibly built using a transparent sheet to be 
applied over the test area), or other more recent computerized 
option (Fig. 3). 

Fig. 3. Test area and test system for 
volume-weighted mean nuclear volume 
estimation. (A) Test area construction 
plan adding alignment marks; (B) Test 
system with lines and points (modified 
from Sørensen, 1991).

Fig. 4. Volume-weighted mean nuclear volume estimation diagram. 
The nuclei (circles) within a test area are sampled by hitting the 
test points (arrows) and then measured (bold line segments) with 
the fifteen logarithmic classes ruler. The test system was aligned 
(between # 70 and the x and y cross, arrowheads). Three nuclei 
profiles were sampled in the example, and nuclear length over the 
test line was measured (in bold).

MANDARIM-DE-LACERDA, C. A. The morphological challenge in determining nuclear size and shape in anatomopathological neoplasia analysis. Int. J. Morphol., 40(3):683-687, 2022.



686
 

6. Volume-weighted mean nuclear volume

           µm3,       (6)

PN is the nuclei sampled, Ln is the ruler’s length in millime-
ters, and M is the final magnification.
 
 The calculations can be done in a spreadsheet (like 
Excel), as shown in Figure 5. The counts of logarithmic ruler 
classes sampled in the images are put on the spreadsheet’s 
upper side. The example shows research with four research 
groups (e.g., control, treatment 1, treatment 3, and treat-
ment 3). In addition, formula 6 can be adapted for MNV 

determination using the spreadsheet data acquisition (the 
spreadsheet’s lower side shows calculation). Then:

               µm3,    (7)
 
 

 In conclusion, performing the MNV quantification 
in the pathologist’s daily practice is not simple. Hence, after 
years of the method description, few published studies on 
MNV are found in Pubmed (less than 100 articles in March 
2022). However, to advance knowledge and scientific re-
search, the method may have greater applicability and be 
used for dubious cases or to advance the characterization of 
a type of neoplasia, like the prostate cancer correlation with 
the Gleason grade (Leze et al., 2014).

Fig. 5. Spreadsheet (Excel) estimates the MNV based on counts and measurements. When hitting test points, nuclei are sampled in 
the test area (Fig. 4). The nuclear profile length is measured over the test line (whose orientation will change randomly with each new 
image). The counts and measurements are shown in the spreadsheet’s upper portion, transformation in the metric system, and statistics 
in the spreadsheet’s lower portion.
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 RESUMEN: A partir de 1984 se agregó la estereología 
a los métodos y procedimientos sin distorción, es decir, los conteos 
se volvieron más confiables al estudiar imágenes morfológicas 
de forma aleatoria e isotrópica uniforme. Por tanto, los métodos 
de orientación y seccionamiento adaptados a la cuantificación 
estereológica son fundamentales. Un tema cuantitativo crítico en 
la patología práctica se refiere al diagnóstico y clasificación de las 
neoplasias. Los patólogos evaluaron diferentes tipos de tumores 
determinando el factor de redondez nuclear (NRF). NRF se calcula 
por la relación entre el radio nuclear obtenido del área y el perí-
metro. Sin embargo, NRF son datos distorsionados debido a que 
dependen de la orientación de la sección, la forma de los núcleos 
y el grosor de la sección. La estereología propuso una alternativa 
imparcial para evaluar el núcleo de las células tumorales, contrarres-
tando cuantitativamente el NRF. Por lo tanto, el volumen nuclear 
medio ponderado se ha utilizado para pronosticar tumores en varios 
órganos. En urología, esto se utilizó, por ejemplo, para estudiar el 
carcinoma primario de vejiga, carcinomas renales y prostáticos.
 
 PALABRAS CLAVE:   Estereología; Morfometría; 
Tumor; Núcleo; Patología.
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