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SUMMARY : The current young morphologist has a background in cellular and molecular biology, where the production of
knowledge is very intense and rapid. However, as demonstrated in this review, quantitative methods in morphology, especially allometry,
may be significant in demonstrating relationships between size and shape, ontogeny, and phylogeny. These themes are essential to the
morphologist and should not be neglected because it improves the morphologists capacity for criticism and proposing projects. In this
text, both ontogenetic and phylogenetic allometries in bivariate and multivariate studies are commented. Therefore, it is an initial text for
those who have not yet been introduced to the topic, which gives the basis for being increased in the future, with more specific literature.

KEY WORDS:  Scaling; Evolution; Slope; Growth; Principal components analysis.

INTRODUCTION

A mathematical relationship between the shape and
size of an anatomical structure (animal or plant) is called
allometry (Gr. allos = another + Gr. metron = measure).
Allometric relationships can be determined during
development (ontogenetic allometry) or in mature
individuals throughout the process of evolution of a species
(phylogenetic allometry) (Pilbeam & Gould, 1974).

Allometry (or scaling) is the study of the
interdependence of size and shape (or function). Changes in
the body size of a living being are inevitably linked to
changes in morphological and physiological variables to
maintain the best adapted to the environment governed by
the laws of physics. Allometric methods and models are used
to describe these changes quantitatively. If allometric
relations are known, it is possible to forecast (within certain
limits) the values of the biological variables of an organism
for giving body size (Jürgens, 1991) (Fig. 1).

It is impressive how the allometric method has been
used to answer the most varied questions in biology,
evolution, and medicine. A quick search in Pubmed
(December 2018) using the keyword allometr* found 6120
published articles. There are studies with plants (Niklas,
2004), mitochondrial function (Miettinen & Bjorklund,

2017), genetics (Winter & Brooks, 2007), human evolution
(Corruccini & Ciochon, 1979; Berge, 1998; Rosas & Bastir,
2004), animal evolution (Berge & Penin, 2004; Baliga &
Mehta, 2018), physiology (Atanasov, 2007), pharmacology
(Mandarim-de-Lacerda & Pereira, 2001; Ahlawat & Srinivas,
2008), cardiology (Li, 2018), obstetrics (Mandarim-de-
Lacerda & Boasquevisque, 1993), pediatrics (Mahmood,
2016), dentistry (Deloison & Fenart, 1997; Polychronis &
Halazonetis, 2014), and many other applications.

Nevertheless, the biomedical and biological students
(including medicine and dentistry) are usually no longer
challenged with quantitative morphology concepts and
possibilities (including allometry), as they are overburdened
with the rich recent knowledge produced in the cell and
molecular biology. However, we must also encourage the
use of quantitative methods by students and researchers as
this increases their capacity for criticism and investigation.
In a recent paper, we discuss the procedures of quantitative
morphology using morphometry and stereology
(Mandarim-de-Lacerda & del Sol, 2017), complemented
here with allometry.

The unforgettable professor Henri Pineau introduced
me to allometry and studies on growth (UFR Biomédicale
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des Saints-Pères, Faculté de Médicine, Université René Des-
cartes) after reading his thesis “Growth and its laws" (la
croissance et ses lois) (Pineau, 1965) and enjoying his easy
conversation on the many afternoons when he came to my
office to taste Brazilian coffee (which I always had).
Monsieur Pineau helped me with calculations and
interpretations during the writing of my thesis (Mandarim-
de-Lacerda, 1985).

In allometric studies, the first decision is to choose
the mathematical model that fits the data. Linear and
nonlinear models have been proposed, discussed and used
(or rejected) for both practical and theoretical reasons
(German & Meyers, 1989a). Some mathematical models
(e.g., high-order polynomial equations) can adjust the data
appropriately but have coefficients practically impossible
to interpret biologically (German & Meyers, 1989b).

We shall see below that the standard equation for
examining the relationship between Y and X variables is the
Huxley log-transformed model (Stevens, 2009), which is a

linear model that assumes that the growth rate of the
dependent variable Y, relative to the independent variable
X, is measured by the coefficient b (slope) (German &
Meyers, 1989a).

There is no solid theoretical basis for the successful
use of Huxleys empirical model. However, some arguments
support the Huxleys concept of "multiplicative growth," and
the method of log-transformation in growth studies has been
usual in analyzing specific or multiplicative growth (Katz,
1980; Shea, 1985; Jolicoeur, 1989).

Allometric relationships are considered specific for
a structure in a given species (animal or plant) during
development or in adult life. Thus, they are relevant to
differentiate or, on the contrary, establish similarities between
anatomical structures homologous or analogous to different
individuals. So, we can use the allometric coefficient in
mathematical-statistical methods of multivariate analysis,
such as discriminant analysis (Torres et al., 2010).

The allometric equation is empirical and has been
employed since the late 19th century studying “the
dependence of the brain weight on the body weight and
mental abilities” (Die Abhängigkeit des Hirngewichts von
dem Körpergewicht und den geistigen Fähigkeiten) (Snell,
1892). However, it was with the British scientists D’Arcy
Thompson (Thompson, 1917) and Julian Huxley (Huxley,
1932) that the method spread (Gould, 1966).

The allometric equations must be accompanied by a
statistical study stating the significance and confidence
interval (necessary to better interpret the biological meaning
of the allometric research). Therefore, the limits of use of
the allometric equations would be (Schmidt-Nielsen, 1985):

a. The equations are descriptive (they are not biological
laws);

b. They are useful to show how much a quantitative varia-
ble is related to the size of the body;

c. The equations can reveal principles and correlations that
would otherwise be obscure;

d. They are useful as a basis for comparison and may show
deviations from a pattern;

e. The equations are helpful in estimating expected values
of a variable, or organ, or function, related to body size;

f. They cannot be used for extrapolations outside the limits
of the data for which they were determined.

Fig. 1 - Allometry measures the relationship between size and shape
as well as the differential growth rates of the parts of a living
organism's body. At the top (positive allometry, red) we see that the
ratio of leg length to height increases from 40% in the child to 55%
of the adult. At the bottom (negative allometry, blue) the ratio of face
height to height decreases from 25% in the child to 15% of the adult.
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Bivariate allometry

The power function (parabola equation) [equation #1]
or its log-transformation [equation #2] is used in bivariate
allometric studies. In logarithmic form, it represents the first-
degree equation that represents a line. For this reason, some
authors consider the log transformation preferable because
it is easier to interpret (but the results are strictly the same
using both equations). The log transformation of the varia-
bles can use the neperian logarithm (natural) or any other
logarithm (the base 10, for example; at least three decimal
places is recommended working with log).

Y = aXb

log Y = log a + b log X

In the bivariate study (also said univariate), the
abscissa X is the independent variable, and the ordinate Y is
the dependent variable. The allometric coefficient b, the slope,
represents the specific rate of change of Y and X. In growth
studies (ontogeny) the coefficient a (or log a) is considered
the “initial growth coefficient” (Teissier, 1948) (Fig. 2).

The representation of these equations is a parabolic segment
[equation #1, Fig. 3] or a line segment [equation #2, Fig. 4].

When b = 1 there is an isometry (the maintenance of the
geometric similarity with the increase of the shape of the structure
-- the shape is maintained with increasing size). When b < 1
(negative allometry), the ratio Y / X decreases with the absolute
magnitude increase of X. When b > 1 (positive allometry), there is
a differential increase of Y relative to X (Figs. 1 and 4). However,
we emphasize that the use of this criterion to indicate allometry or
isometry is only valid when the dimensions of Y and X are the
same. In other situations, the rules for allometry (positive or
negative) and isometry may vary (as detailed in Table I).

Fig. 2.- Still analyzing the allometry with log-transformed data
(log Y = log a + b log X). We see that the angular coefficient b
(also called the allometric coefficient) represents the slope. The
point where the line would touch the Y-axis is measured by log a,
and if log a = 0 the line passes through the origin of the axes.

Fig. 3. Example of how allometric curves can be with the equation
in the form of power (Y = aXb - parabolic segment). Note that
positive allometry (b>1) has a left concave curve (red), while
negative allometry (b<1) has a right concave curve (blue). When
there is an isometry (b=1), the representation is a line (black).

Fig. 4. The graphical representation using log-transformed data and
first-degree equation (log Y = log a + b log X). When there is an
isometry (b=1, black line), ∆x and ∆y are proportional. In positive
allometry (b>1, red line) ∆y is more significant than ∆x, and in negative
allometry (b<1, blue line) is the opposite, ∆y is smaller than ∆x.

Fitting the graph

The graph of the power function, or its log
transformation, is usually fit by the least squares method, or
type 1 regression (Sokal & Rohlf, 1995; Kilmer & Rodriguez,
2017). With log-transformed data, the first-degree equation
draws a line and quickly allows calculation of the coefficients

(1)

(2)
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Y X Isometry (b)
mm mm 1
mm2 mm2 1
mm3 mm3 1
mm mm2 1/2 (or 0.50)
mm mm3 1/3 (or 0.33)
mm2 mm3 2/3 (or 0.67)
mm3 mm 3
mm3 mm2 3/2 (or 1.50)
mm2 mm 2

Table I. Isometry conditions (*).
* The millimeter was used
here as an example (it
could be whatever unit of
length). The mass (which
represents a three-dimen-
sional magnitude) can be
compared to a cubic length
of equal proportions, i.e.,
gram vs. cubic meter,
milligram vs. cubic
millimeter.
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a and b as indicated below (equations #3 to #6) (available in
the current statistical packages).

a = Y - bX

n (∑ xy) - (∑ x) • (∑ y)
n(∑ x2) - (∑ x)2

 ∑y
n

∑x
n

The strength and significance of the correlation
between Y and X are measured with the Pearson coefficient
of correlation (r, equation #7).

n (250 ∑ xy) - (∑ x) • (∑ y)
√[n(∑ x2) - (∑ x)2]  •  [n(∑ y2) -  (∑ y)2]

The statistic to verify how much r differs significantly
from zero is available with the t-distribution and n-2 degrees
of freedom (equation #8).

r√n-2

√1-r2

However, the biometric variables are subject to
measurement errors that may be dependent on the accuracy
of the instrument or the observer. Therefore, the type 2
regression method was proposed to overcome this problem
with measurements and can be assessed by two main
techniques (but there are others):

a. The major (or principal) axis;
b. The reduced (or standardized) major axis.

Generally, no distinction is made with which
technique we correct regressions that cannot be considered
free of measurement errors (Sokal & Rohlf, 1995) [the
discussion -- which method should be used for type 2
regression -- is irrelevant when the value of r is high (Reiss
& Schmid-Araya, 2010)]. Thus, we suggest the procedure
of the reduced major axis (RMA) because of easy calculation.

We can calculate the slope by RMA (now our new
allometric coefficient) as the ratio between the slope
determined by the least squares method (LSM, already
mentioned) and the Pearson correlation coefficient (equation
#9). The more the coefficient r approaches 1, the smaller the

difference between the b
LSM

 and b
RMA

 coefficients. However,
correction for the RMA is significant as the coefficient r
moves away from the unit.

 b
LSM

  
Comparison between allometric coefficients

When we have more than one set of data, and we
evaluate the allometry in each set, then we must answer the
following questions:

a. Is the difference between the allometric coefficients b of
each data set statistically significant?
b. The different allometric coefficients b come from the same
population?

The answers are given when we compare the slopes
b for different populations (or samples). A simple method
to test the hypothesis about the equality of the coefficients
b of two populations (1 and 2) involves the use of t-test
(equations #10 to #12) with a degree of freedom [(n1 +
n2) -4] (Zar, 2010) (most statistical packages can perform
the analysis).

(b1−b2)
S

(b1-b2)

The standard error of the difference of coefficients
b is:

             S2 (YX)1   S2 (YX)2

                              √   (∑ x2)1      (∑ X2)2

Moreover, the conjoint mean square residual is:

[n (∑ Y2)1 + (∑ Y2)2]
(n1- 2)  +  (n2- 2)

We interpret the results as follows: if the coefficients
b calculated for the two sets of data have no difference, i.e.,
b1 = b2, it means that there is no allometric difference
between the two populations (i.e., have the same slope).
However, the lines may be at different levels in the graph,
indicating that the source populations have different initial
growth coefficients (intersections) (Huxley, 1932; Teissier,
1948), which can also be tested statistically (intersection test)
(Zar, 2010).

b =

Y =

(3)

(4)

(5)

X = (6)

r =
(7)

t =
(8)

b
RMA

 = r
(9)

t = (10)

S(b
1
-b

2
) = [ (11)

S2
(XY)  

=
(12)

+
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a. An example of ontogenetic allometry testing slopes:
the relative growth of the myocardium was studied in 27
staged human embryos (Carnegie stages). The volume of
the myocardium was determined for each embryo
[Cavalieri's principle with point-counting planimetry -- see
details in (Mandarim-de-Lacerda & del Sol)]. The volume
of the myocardium (variable Y, in cubic millimeters) was
correlated to embryonic crown-rump length (CRL, variable
X, in millimeters) and age (in days). The bivariate model of
allometry was used as Y=aXb. The scatter plot was
discontinuous, presenting two trends during the post-somitic
period. The first part was composed of embryos staged from
stages 15 to 20, and the second part by embryos staged from
stages 21 to 23. The breakpoint between these different trends
was found at the level of stage 20 (embryo of 22 mm CRL
and age nearly 52 days). From stages 15 to 20, the growth
rate of the myocardium was allometrically negative, and from
stages 21 to 23 the growth rate was moderately allometrically
positive. The test of slopes demonstrated the two growth
rates were statistically different. The differences in growth
of the myocardium, at least partially, might be due to the
functional circulatory increase in the peripheral vascular bed
in correlation to the cardiac hemodynamic demand required
at the end of the embryonic period proper (Mandarim-de-
Lacerda, 1991a).

b. Another example: Fetal programming (see Barker et al.,
1993; Barker, 2000) is a significant risk factor for
noncommunicable diseases of adulthood, including coronary
heart disease. Mouse embryos from Stages 16 to 23
(Carnegie) were taken from mothers fed a normal protein
(NP) or low protein (LP) diet, and the coronary arteries were
studied. Although the LP embryos had lower masses, they
had faster heart growth rates when compared with the NP
embryos (see Table II for results presentation). The
subepicardial plexuses were observed earlier in the NP
embryos (Stage 20) than in the LP ones (Stage 22; P < 0.01).
Apoptotic nuclei were seen around the aortic peritruncal ring
beginning at Stage 18 in the NP and LP embryos. FLK1 (+)
(fetal liver kinase 1 = VEGF-r2 or vascular endothelial
growth factor receptor 2) cells had a homogeneous
distribution in the NP embryos as early as Stage 18, whereas
a similar distribution in the LP embryos was only seen at
Stages 22 and 23. Maternal protein restriction in mice leads
to a delay in the growth of the heart in the embryonic period,
modifying the development of the subepicardial peritruncal
plexus and the apoptosis in the future coronary orifice region
(Silva et al., 2011).

Multivariate allometry

We may be interested in analyzing allometrically
different variables of a population (or sample)

simultaneously, and in this case, bivariate allometry cannot
be used, but multivariate allometry (Shea, 1985).

The principal components analysis (PCA) is
frequently used to study multivariate allometry. The linear
combination that corresponds to the most substantial portion
of the variability is called the first principal component
(PC1). The second principal component (PC2) measures the
greatest variability after removal of the PC1 effect. The
calculations involve the extraction of eigenvalues and
eigenvectors from correlation or covariance matrices,
organized with the numeric data (log-transformed or not) of
the variables under study (Manly & Alberto, 2016).

PCA is a data reduction method. A set of correlated
variables is transformed into a small set of uncorrelated va-
riables (called principal components) that measure most of
the variability among individuals in the sample. The princi-
pal components are linear combinations (weighted averages)
of the original variables. PC1 has the most significant
variance of this linear combination. The successive princi-
pal components (PC2, .... PCn) are also substantial and can
efficiently replace the original variables (Corruccini, 1983).

Eigenvalues and eigenvectors are mathematical
indicators associated with a matrix and are related to the
algebra of linear transformations (Longman et al., 1989).
The eigenvalues are linked to the number of variables and
represent the proportion of total variation contained in each
component. The degree of correlation that each variable has
with a specific component is given by the vector of
correlation coefficients (or covariance). In practice, statistical
software frequently may determine eigenvalues and
eigenvectors (a computer calculation of  eigenvalues and
eigenvectors is almost mandatory).

Multivariate isometry exists when all p-dimensions
increase with the same rate, which implies that all
eigenvalues p are equal (p is the number of variables under
analysis) (Manly & Alberto, 2016). The multivariate
isometry hypothesis should be verified with the X2 test
(equation #13), with a degree of freedom p - 1. A vector
greater  √1/p    than indicates positive allometry, otherwise
negative allometry (Jungers & German, 1981):

     1
     p

Although there is controversy in literature, the choice
for the study with PCA is extracting eigenvalues and
eigenvectors of a covariance matrix with log-transformed
data (Corruccini & Henderson, 1978; Mandarim-de-Lacerda,
1991b; Mandarim-de-Lacerda & Alves, 1992).

isometry =√
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c. An example of multivariate allometry: We studied the
morphological significance of the endocardial cushion tissue
and ventricular myocardium during cardiac development.
Endocardial cushion tissue and ventricular myocardium were
quantified by point count planimetry and Cavalieri’s method
[see details in (Mandarim-de-Lacerda & del Sol)]. The
relative growth of the volume of these structures and the
embryonic crown-rump length were studied by multivariate
allometry (principal components analysis) with the
covariance matrix calculated from natural logarithms of the
data. Twenty-seven serially sectioned human embryos were
examined, ranging from stage 15 to stage 23 (Paris
collection). The relative growth of endocardial cushion
tissue, ventricular myocardium, and crown-rump length was
discontinuous during the post-somitic period. The first
component in principal components analysis measures the
overall size and, in the present study, accounts for 88.6% of
the total variance. The X2 test checked the growth vector
isometry hypothesis, and the differences in growth between
cardiac structures and crown-rump length were allometric
(P<0.01). Endocardial cushion tissue volume and crown-
rump length grew with negative allometry during the second
month of gestation, while ventricular myocardium volume
grew with positive allometry. The findings agree with those
researchers who consider that endocardial cushion tissue
functions only in causing first cardiac fusion and partitioning,
with little influence on the formation of definitive cardiac
structures (Mandarim-de-Lacerda, 1991b).
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RESUMEN: El joven morfólogo actual tiene una forma-
ción en biología celular y molecular, donde la producción de co-
nocimiento es muy intensa y rápida. Sin embargo, como expusi-
mos en esta revisión, métodos cuantitativos en morfología, en es-
pecial la alometría, pueden ser significantes en demostrar relacio-
nes entre el tamaño y la forma, la ontogenia y la filogenia. Estos
temas son importantes para el morfólogo y no deben ser descuida-
dos porque mejora la capacidad de crítica  y la propuesta de pro-
yectos. En este texto, presentamos la alometría ontogenética y la
filogenética, en estudios bivariados y multivariados. Por lo tanto,
es un texto inicial para quienes aún no se han introducido al tema y
que dará las bases para ser acrescentado en el futuro, con literatura
más específica.

PALABRAS CLAVE: Escalamiento; Evolución; Incli-
nación; Crecimiento; Análisis de componentes principales.
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