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SUMMARY:  In experimental studies the outcome variable is measured at initial time, usually called “baseline”, and then in
several times called “follow-up” measurement(s). The study question of interest in an experimental study is whether there is a significant
difference effect between treatment and comparison group, after intervention. In addition, one wants to estimate the difference effect
between groups. This paper studies some of the strategies, including a simulation process, that one can be used for analyzing data
coming from an experimental study as above, and considers using or not using the baseline measurements.  Three parametric and two
non-parametric strategies are evaluated considering only one follow-up measurement.  The baseline measurement is incorporated in
context in these strategies.
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INTRODUCTION

In experimental studies (ES), the term "baseline" is
used for the measurements of a participant before the start
of intervention. These measurements are the basis for
characterizing and describing the population in the study.
In addition, the investigators compare the distributions of
baseline characteristics in the treatment group with the
comparison group. In ES, if randomization worked, one
expects that there will be no meaningful differences in these
characteristics between the groups. However, if there are
big differences, randomization can be called into question
(Friedman et al., 1985; Piantadosi et al., 1997).

 This paper only considers those ES which randomly
assign patients to one of two groups, treatment group or
comparison group, and where the outcome of interest is a
continuous variable. Under this design, the outcome va-
riable is measured at two times; one time before the
intervention (baseline data) and the other time after the
intervention (follow-up data).

 In these ES the study question of interest is whether
there is a significant difference effect between treatment
and comparison groups, after intervention. Also, one wants
to estimate the difference effect between groups.

 In both type of study design, there are different
ways to analyze the question of interest. For instance,
one can use Nonparametric Analysis or Parametric
Analysis. In addition, one of the considerations to deal
with is whether to use or not use the baseline data in the
analysis.

 This manuscript refers to some of the strategies
that one can use for analyzing data coming from an ES,
and considers using or not using the baseline
measurements. Section 2 and 3 show the parametric and
nonparametric methods used in the analysis of the data
from an ES. In Section 4, we describe some guideline to
use these procedures.
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MATERIAL AND METHOD

Parametric methods. In an experimental study, patients are
randomly assigned to the comparison group or treatment
group, before the intervention is applied. It is assumed that
there are continuous measures on each participant at two
times, before intervention and after intervention, for an
outcome variable of interest. Suppose that measurements of
the outcome variable on patients at the baseline (before
intervention) for control group and treatment group are Y

ctrl,

b, i,
 i = 1, ..., n

ctrl
 and Y

treat, b,
 

i,
 i = 1, ..., n

treat
, respectively.

Similarly, let the corresponding measurements at the follow-
up (after intervention) for control group and treatment group
be Y

ctrl, f, i,
 i = 1, ..., n

ctrl
 and Y

treat, f, i,
 i = 1, ..., n

treat
, respectively.

Suppose that the variance-covariance matrix in the two
groups is identical and equal to:

and if the sample sizes of the treatment and control groups
are equal (n

treat
 = n

ctrl
 = n) we obtained the known expression:

 
where σ2 = Var(Y

ctrl, b, i
) = Var(Y

treat, b, i
) and ρ=Corr(Y

ctrl, b, i
 ;

Y
treat, b, i

). This assumption means that the variance of the
continuous outcome at baseline and at follow-up is the same,
σ2, and the correlation between both outcomes is ρ.

 The interest of this experiment is the assessment of
the difference effect between treatment and control group.
It is possible to analyze the difference effect between these
groups by using the following strategies:

Simple model. This strategy uses measures on each
participant at follow-up only (no baseline data). It can be
represented by Y

f
 = α

0
 + α

1
T + e, where Y

f
  is the outcome at

follow-up, α
0
 is the intercept term, a1 is the effect of

difference between treatment group and control group, T  is
an indicator variable of group, and e is the error term that
follows a normal distribution with mean 0 and variance σ2.
In this model, the unbiased estimate of α

1
 is given by:

where  Y
treat 

and  Y
ctrl 

are the average values of the outcome
at follow-up in the treatment group and control group,
respectively. The meaning of this estimator is just the
difference of the two means without controlling for the
baseline measurements. It is assumed that the randomization
produces balance of the outcome between the groups. The
variance of the estimate ofα

1
 is:

 Most standard analysis of ES state that randomization
takes care of baseline differences and thus this Simple model
approach is appropriate.

Difference Score model. This method employs differences
of the measures of follow-up and baseline on each
participant. The following model is used: Y

f
 – Y

b
 = β

0
 + β

1
T

+ e, where (Y
f 
– Y

b
) is the difference between the outcome

variable at follow-up and baseline, β
0
 is the intercept term,

β
1
 is the effect of difference of treatment and control group,

and T and e are as before. The estimated difference of
treatment effect is given by:

where, Z
treat

=Y
treat,f

 - Y
treat, b

, Z
ctrl

 = Y
ctrl,f 

 - Y
ctrl, b

 and  Y
ctrl,f 

 and
Y

treat,f
 are the sample means of the outcome variables at

follow-up for control group and treatment group, and  Y
ctrl,b

and Y
treat, b

 are the sample means at baseline for control group
and treatment group, respectively. This estimator considers
the potential imbalance in the outcomes due to the
randomization process. Note that, β1 compare the differences
between the means  Z

treat 
 and Z

ctrl 
 adjusted by the averages

at baseline.

The variance of the estimate of  is given by:

and if the sample size are equals, then:

where ρ is the within-subject correlation between baseline
and follow-up measurements. In general, this correlation is
most likely to be positive, reducing the variance of β1.

This approach is often more efficient than using only
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a single follow-up measurement because the standard error
of the effect of difference of treatment and control is usually
reduced as the result of using two measurements from each
participant.

Analysis of Covariance (ANCOVA) model.This method
employs the baseline measurement as a covariate. One fits
the following regression model: Y

f
 = δ

0
 + δ

1
T + δ

2
Y

b
 + e, where

δ
0
 is the intercept term, δ

1
 is the effect of the difference between

the treatments, δ
2
 is the effect of the baseline measurement,

and T and e are as before. This model depends on several
assumptions, including normality of error terms, equality of
error variances for different treatments, equality of slopes for
the different treatment regression lines, and linearity of
regression. The unbiased estimate of δ

1
 is given by:

where:

with

where  δ
1,ctrl 

 and δ
1,treat  

are the estimate slopes on separate
line fits for control group and treatment group, S2

Yb,ctrl 
 and

S2
Yb,teat 

 are the sample variances of the outcome variable at
baseline for control group and treatment group, Y

ctrl,f
 and

Y
treat,f  

are the sample means of the outcome variables at
follow-up for control group and treatment group, and Y

ctrl,b

and Y
treat,b 

 are the sample means at baseline for control group
and treatment group, respectively. The estimator δ

1
 is a

generalization of the previous estimators shown in 1.1 and
1.2 (Kleinbaum et al., 1998).

Considering that here we have two groups (control
and treatment) the two adjusted regression lines by fitting
the ANCOVA model are:

Comparison group (T=0):

Treatment group (T=1):  

An alternative way to calculate the unbiased estimate of δ
1

is :

So, the variance of the estimate ofδ
1
 is given by:

and if n
treat

 = n
treat

 = n then

Thus, the covariance analysis reduces the variance
of the treatment effect estimate and thereby is a more
powerful statistical test (provides narrower confidence
intervals) for examining the difference between groups
(Koch et al., 1982).

Non-parametric methods. Based on randomization in the
study design, the analysis can be nonparametric. For instance,
it is possible to use the Wilcoxon-Mann-Whitney test to
analyze the strategies of the Simple model and Difference
Score model above, and the Rank Analysis of Covariance to
analyze the ANCOVA model (Wilcoxon et al., 1945).

The Wilcoxon-Mann-Whitney test can test the null
hypothesis that the distribution of an ordinal scale response
variable is the same in two independent groups. This
statistical test is sensitive to the alternative hypothesis that
there is a location difference between the two groups. Also,
this statistical test can be used when the t-test is appropriate
(Wilcoxon et al.).

The Wilcoxon-Mann-Whitney test converges to the
Mantel-Haenszel mean score statistic for the special case of
one stratum when rank scores are used, if the sample size is
large. Thus, another way to analyze the data under the Sim-
ple model and Difference Score model is using the Mantel-
Haenszel mean score statistic (Wilcoxon et al.).

As mentioned before, the ANCOVA model depends
on several assumptions which one must prove before fitting
the model. In situations in which these assumptions are not
satisfied, it can be used the Rank Analysis of Covariance
(Quade et al., 1982). This technique can be combined with
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the extended Mantel-Haenszel statistics to establish
nonparametric comparisons between treatment groups, after
adjusting for the effect of thecovariate (Koch et al., 1982,
1990).

The advantages of nonparametric methods include
higher statistical power under certain conditions, exact p-
values for the test when sample size is small, and no
assumptions of any kind of distribution. However, the
disadvantage of this method is the lack of estimates of the
magnitude of treatment effects.

Relative Efficient. The relative efficiency (Reffic) of the
three parametric methods above can be calculated. The
relative efficiency of the Difference Score model relative to
the Simple model, the relative efficiency of ANCOVA
relative to the Simple model, and the relative efficiency of
the Difference Score relative to ANCOVA, is going to be
calculated. The Reffic is defined in terms of the ratio of the
variance of the effect based on each method.

 Let Y
bi
 indicate the baseline measurement and Y

fi

the follow-up measurement, then the difference score is:d
i

= Y
f i 
– Y

bi
. Assume normality for Y

bi
 and Y

f i
, with Var(Y

bi
) =

Var(Y
fi
) = σ2  and correlation between Y

bi
 and Y

fi
 given by

ρ. The variance of d is given by Var(d
i
) = 2(1 – ρ)σ2, with

the restriction of equal variance for Y
bi
 and Y

fi
. So, the

efficiency of the Difference score relative to the Simple
model is equal to:

Reffic(ANCOVA, Simple model) = Var (ANCOVA) /
Var(Simple model) = (1-ρ2)

This value is always less than or equal to 1. Therefore,
ANCOVA is never less efficient than the Simple model. The
efficiency of the Difference Score relative to ANCOVA is
equal to:

Reffic(Difference Score, ANCOVA) = Var (Difference Score)
/ Var (ANCOVA)

= 2 (1-ρ) / (1-ρ2)
= 2 / (1+ρ)

which is always greater than or equal to 1. So, ANCOVA
never has less efficiency than the Difference score model.

Applications

Example: A Experimental Study to Compare Two
Treatments of Cholesterol

This example is based on data from an experimental
community-based trial to compare the efficacy of a school-
based treatment with a placebo group for reducing cholesterol
levels in children (Harrell et al., 1996). By randomization,
617 children were assigned to the control group and 546
children were assigned to the treatment group. The primary
outcome variable was level of cholesterol for the 1163
children, measured at two times, before intervention and after
intervention.

The analysis plan for this experimental study
identified 5 covariables at baseline as relevant candidates
for adjustment, which were Height (cm), Weight (kg), VO

2

Max (aerobic capacity, ml/kg/min), Skinfold Sum (mm), and
Systolic BP (mmHg).

Table I describes the characteristics of the children
at baseline. From this table, one can see the imbalance in
the distribution of baseline Cholesterol values for the two
groups. The average cholesterol level was 164.9 mg/dl and
168.2 mg/dl in the control group and the treatment group,
respectively. The distributions of the covariables Height,
Weight, VO

2
 Max, Skinfold Sum, and Systolic BP do not

vary much between the treatment group and control group
at baseline (Table I). The statistical analysis for this ES
considers the nonparametric and parametric methods
mentioned in section 1.

3.1. Parametric Analysis

The three models mentioned in section 1.1 are applied
to the data in this section. PROC GLM in SAS is used to

A correlation between Y
bi
 and Y

fi
 greater than 0.5

would make the Difference Score model more efficient than
the Simple model. Also, a correlation less than 0.5 insures
that the Simple model is more efficient than the Difference
Score model.

Under the ANCOVA model, the variance of Y
fi
 given

Y
bi
 is:

Then the efficiency of ANCOVA relative to the Sim-
ple model is given by:

SANHUEZA, A.; OTZEN, T.; MANTEROLA, C. & ARANEDA, N.  Statistical approaches for analyzing a continuous Outcome in experimental studies. Int. J. Morphol., 32(1):339-350, 2014.



343

calculate the corresponding statistics for each model. Also,
an estimate of the difference effect between groups will be
provided.

Table II shows the results of the analysis for the three
models mentioned. For the Simple Model, the effect of the
difference between groups is not significant (p-
value=0.1168). The estimated effect difference in cholesterol
at follow-up of the two groups is 2.73. This analysis is
equivalent to using a t-test statistic for two independent
samples.

Variables Control group
(n = 617)

Treatment group
(n = 546)

Cholesterol (mg/dl) 164.9±27.81 168.2±30.81

Height (cm) 136.6±7.21 135.6±7.11

Weight (Kg) 34.9±9.30 33.9±8.34

V02 Max (ml/kg/min) 41.5±10.11 42.5±9.59

Skinfold Sum (mm) 26.2±14.58 25.5±13.68

Systolic BP (mmHg) 104.0±10.06 103.5± 9.94

Table I. Baseline Characteristics of the 1163 Children (mean±SD).

The second model, Difference Score, shows that the
difference between the groups is significant (p-value <
0.0001). The estimate of the difference in cholesterol of the
groups is 6.05. The adjusted linear model for the difference
score is given by:

The ANCOVA model shows that Cholesterol at
follow-up depends strongly on the Cholesterol at baseline
(p-value < 0.0001) and the difference between groups, after
accounting for the baseline Cholesterol level, is significant
(p-value < 0.0001). The two adjusted regression lines are:
Comparison group:

and  Treatment group: 

, respectively and the estimate of difference between
treatments after accounting for the baseline Cholesterol level
is 5.30.

From the Difference Score model and the ANCOVA
model, one can note that there is no difference in the
conclusions for this analysis, because the p-values associated
with the difference in the groups are almost the same.
However, the value of the statistic associated with the
difference in groups for the Difference Score model is greater
than the value associated with the ANCOVA model, but the
standard error of the estimate of difference between the
groups for the Difference Score model is less than the stan-
dard error of the estimate of the difference for the ANCOVA
model (Table II).

The analysis also considered adjusting
simultaneously for the covariables Height, Weight, VO

2
 Max,

Skinfold Sum, and Systolic BP at baseline. Table IV and
Table V show the results of this analysis. All of the models
are ANCOVA models; however, keep the same names as
given above (Simple model, Difference Score model,
ANCOVA model) in order to facilitate comparisons among
the models using additional covariables and those not using
the covariables. The Simple model shows no difference
between the groups (p-value = 0.1031). The difference score
model shows a significant difference between the groups
(p-value = 0.0001). The ANCOVA model shows that the
effect of the difference between groups is significant (p-
value=0.0001).

 The conclusions related to the difference between
groups obtained from those models with the 5 additional
covariables (Height, Weight, VO

2
 Max, Skinfold Sum, and

Systolic BP) at baseline are the same as those without the
additional covariables (see Tables IV and V). Also, the
estimates of the difference effects between groups are almost
the same for those models with the 5 additional covariables
and those without the additional covariables. In other words,
it is not necessary to adjust for the 5 covariables in the three
models used, because the distribution of these 5 covariables
at baseline is balanced between the two groups.

Table II. Parametric Analysis Using Linear Models.

Model Mantel-Haenszel
Statistic

df p-value

Simple model 2.40 1 0.121

Difference Score model 26.36 1 0.001

Table III. Wilcoxon-Mann-Whitney Test Using the Mantel-
Haenszel Score Chi-Square Statistic.
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Model
Specification

Model
terms

Parameter
estimate

Standard
error

p-values

0α 161.25 1.268 < 0.0001
Simple model

1α 2.73 1.741 0.1168

0β -6.70 0.866 < 0.0001
Difference
score model

1β 6.05 1.188 < 0.0001

0δ 31.07 3.328 < 0.0001

1δ 5.30 1.125 < 0.0001ANCOVA
model

2δ 0.77 0.019 < 0.0001



344

3.2  Non-parametric Analysis. The Wilcoxon-Mann-
Whitney test was used to analyze the Simple model (no
baseline data) and the Difference Score model. This test
converges to the Mantel-Haenszel mean score statistic for
the special case of one stratum when rank scores are used.
In this example, the sample size is large enough, so that
Mantel-Haenszel is appropriate for providing confirmatory
inferences for treatment group being better than control
group. PROC FREQ in SAS was employed to calculate the
Mantel-Haenszel statistic.

For the Simple model, Table III shows the Mantel-
Haenszel mean score statistic, which indicates that there is
no a significant difference between treatment group and
control group (chi-square = 2.401, 1 df, p-value = 0.121).
Also, this table shows that for the Difference Score model,
the Mantel-Haenszel mean score statistic is equal to 26.359

Table IV. Rank Analysis of Covariance combined with Mantel-
Haenszel Statistic.
Specifica tion of the
covariables

Mantel-
Haenszel

df p-value

Cholesterol at baseline (Yb) 15.79 1 0.001

Yb, Height, Weight, VO2 Max,
Skinfold Sum, Systolic BP

18.49 1 0.001

Parameter StandardModel Specification

Covariable Estimate Error p-values

Program 2.79 1.713 0.1031

Height -0.65 0.21 0.0026

Weight 0.16 0.296 0.5896

Uptake -0.16 0.120 0.1829

Skinfold Sum 0.30 0.145 0.042

Simple model

SBP 0.05 0.093 0.578

Program 6.36 1.182 0.0001

Height -0.17 0.148 0.2532

Weight 0.12 0.204 0.5606

Uptake 0.17 0.083 0.0359

Skinfold Sum -0.001 0.100 0.9932

Difference Score model

SBP -0.19 0.064 0.0024

Program 5.56 1.124 0.0001

Cholestrol at Bl. 0.77 0.020 0.0001

Height -0.28 0.141 0.0495

Weight 0.13 0.194 0.5087

Uptake 0.10 0.079 0.2105

Skinfld Sum 0.07 0.096 0.4892

ANCOVA model

SBP -0.14 0.061 0.0225

with 1 df, corresponding to a p-value of 0.001. Therefore,
the cholesterol level change differs between the treatment
group and the control group.

The ANCOVA analysis was carried out using Rank
Analysis of Covariance combined with the extended Man-
tel-Haenszel statistics. This methodology can be
implemented in the SAS System, by using PROC RANK,
PROC REG, and PROC FREQ.

The ANCOVA analysis results with cholesterol at
baseline as the only covariable is given in Table IV. The
Mantel-Haenszel statistic is equal to 15.79, with 1 df, and a
p-value of 0.001; which indicates a clearly significant
difference between treatment group and control group after
accounting for the cholesterol level at baseline.

In the ANCOVA analysis with cholesterol, Height,
Weight, VO

2
 Max, Skinfold Sum, and Systolic BP at baseline

as the covariables; the Mantel-Haenszel statistic was equal
to 18.49, 1 df, with corresponding  p-value of 0.001. Thus,
there is a significant difference between treatment group and
control group after adjusting for the additional baseline
covariables. The Mantel-Haenszel statistic from this model
is just slightly larger than for the ANCOVA model with

Table V. Analysis Parametric Using Additional Covariables at Baseline.
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cholesterol as the only covariable. One of the reasons for
this is the balance in the baseline distribution of these
additional covariables for the two groups (see Table I).

The results from nonparametric methods agree with
the results obtained using parametric methods.

Simulations

Simulation Process. This section considers the estimation
of the difference effect between groups for the three models
mentioned in section 1 using a simulation process. The data
utilized for fitting the three models (Simple model,
Difference Score model, and ANCOVA model) is generated
in the following manner:

A) The outcome variable at baseline, Y
bi
, is generated as

following:

Note that the outcome variable at baseline and follow-
up as generated above have the same variance σ2, and the
correlation between these two variables is equal to ρ.

The estimation of the difference effect between
groups can be affected by different conditions, such as:

a) The standard deviation of the outcome variables at baseline
and follow-up, which is assumed to be the same. Two
different values will be used: σ = 10 and 30

The correlation, ρ, between the outcome variables at
baseline and follow-up. The simulation will use the following
values: ρ = 0.4 and 0.7

The difference effect between groups, β. Three
different values will be used: β = 2, 5, and 10

The sample size, n. Two different sample sizes will
be used: n = 100 and 1000

 Thus, combining all the possible values for σ, ρ, β
and n, there are 24 different scenarios that one can analyze
for comparing the three models of interest. For each of these
24 scenarios, three hundred simulations will be performed.

RESULTS

This section presents the results of the simulation,
which are tabulated for the 24 scenarios mentioned before.
Appendix contains these tables that present the estimation
of the difference effect between groups, the statistical tests,
and the p-values for the three models fitted.

In general, the results for the three models show that
the estimates of the difference effect between groups are
unbiased. Also, when the correlation between the outcome
variable at baseline and follow-up is small (ρ = 0.4), the
estimated variance of the estimated difference effect between
groups under the Simple model is less than that under the
Difference Score model. However, when this correlation is
high (ρ = 0.7) the estimated variance of the estimated
difference effect between groups under the Simple model is
greater than that under the Difference Score model. The
results also show that the estimated variance of the estimated
difference of group effects under ANCOVA model is the
smallest.

For a small value of the correlation between outcome
variable at baseline and follow-up, ρ = 0.4, on average the
p-value associated with the difference effect between groups

Where Z
1i
 and Z

3i
 are independent N (0, 1).

The random variables Z
1i
 and Z

3i
 were created using

the function RANNOR in SAS.

B) By using randomization, half of the n data generated at
baseline is assigned to the control group and the other half
is assigned to the treatment group. PROC PLAN in SAS
was used to assign at random.

C) The outcome variable at follow-up, Y
fi
, is generated in

the following manner:

 i) If the participant belong to the control group, then

Where Z
2i
 and Z

3i
 are independent N (0, 1).

The random variable Z
2i
 was created using the

function RANNOR in SAS, and Z
3i
 has values as before.

 ii) If the participant belong to the treatment group,
then

where Z
2i
 and Z

3i
 are as before; and  β represents the

difference effect between the two groups.
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under the Simple model is less than that under the Difference
Score model. However, on average the p-value associated
with the difference of group effects under ANCOVA model
is the lowest, but this value does not vary much with respect
to the p-value under the Simple model. Thus, when ρ is small
one can fit the Simple model or ANCOVA model and get
the same conclusion with respect to the difference in groups.
Also, when the value of ρ is high, on average the p-values
associated with the difference effect between groups under
Difference Score model are similar to those under ANCOVA
model, so one can fit any of these two models. Therefore, if
ρ is small one can say that the p-value obtained under the
Difference Score model is the most conservative. But, if ρ
is large, the p-value under the Simple model is the most
conservative.

One can see that the p-values (for the three models)
associated with the difference of groups effect when the Stan-
dard Deviation is small, SD=10, are less than when the Stan-
dard Deviation is high, SD=30.

For a small sample size, n = 100, and a small value
of β, β = 2, there are no significant p-values (< 0.05), i.e. no
significant difference effect between groups. Now, for a small
sample size and a medium value of β, β = 5, there are
significant p-values under the Difference Score model and
ANCOVA model, only when the Standard Deviation is small
and the correlation between the outcome variable at baseline
and follow-up is large. When the sample size is small and β
is large, there are significant p-values for the three models
only when the Standard Deviation is small.

For a large sample size, n = 1000, and a small value
of β there are significant p-values under the three models
only when the Standard Deviation is small. Also, for a large
sample size and a medium value of β, there are significant
p-values under the three models when the Standard Deviation
is small; but also under the Difference Score model and
ANCOVA model when the Standard Deviation and ρ are
large. If the sample size and β are large, then all of the p-
values are significant.

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 2.13 2.106 1.98 6.063
BETA-DIFFERENCE 2.15 2.163 1.86 7.214
BETA-ANCOVA 2.13 1.885 1.88 5.797
TEST-SIMPLE 1.06 1.057 0.33 1.021
TEST-DIFFERENCE 0.98 0.992 0.28 1.111
TEST-ANCOVA 1.15 1.023 0.34 1.063
P-VALUES-SIMPLE 0.35848 0.30005 0.47036 0.28277
P-VALUES-DIFFERENCE 0.37286 0.30355 0.46891 0.30416
P-VALUES-ANCOVA 0.33605 0.29843 0.46766 0.29641

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 1.89 2.028 1.94 5.996
BETA-DIFFERENCE 2.00 1.573 1.84 4.499
BETA-ANCOVA 1.96 1.433 1.86 4.169
TEST-SIMPLE 0.95 1.015 0.32 1.005
TEST-DIFFERENCE 1.29 1.024 0.41 0.992
TEST-ANCOVA 1.37 1.006 0.44 0.991
P-VALUES-SIMPLE 0.36872 0.28276 0.47383 0.29576
P-VALUES-DIFFERENCE 0.30409 0.29458 0.47793 0.28864
P-VALUES-ANCOVA 0.28777 0.29518 0.46265 0.28229

APPENDIX

This appendix contains the tables that present the estimation of the difference effect between
groups, the statistical tests, and the p-values for the three parametric models fitted using simulation.

Table Scenario 1 and 2: n = 100, r = 0.40, and β = 2.

Table Scenario 3 and 4: n = 100, ρ = 0.70, and β = 2.
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SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 4.82 2.019 4.84 5.826
BETA-DIFFERENCE 4.95 2.186 5.12 6.089
BETA-ANCOVA 4.86 1.865 4.92 5.214
TEST-SIMPLE 2.43 1.029 0.81 0.981
TEST-DIFFERENCE 2.27 1.011 0.78 0.929
TEST-ANCOVA 2.66 1.033 0.89 0.947
P-VALUES-SIMPLE 0.07872 0.15343 0.41614 0.31024
P-VALUES-DIFFERENCE 0.09707 0.16577 0.43133 0.31093

Table Scenario 5 and 6: n = 100, ρ = 0.40, and β = 5.

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 5.14 1.838 5.22 6.605
BETA-DIFFERENCE 5.03 1.609 5.22 4.840
BETA-ANCOVA 5.07 1.440 5.29 4.583
TEST-SIMPLE 2.59 0.954 0.88 1.127
TEST-DIFFERENCE 3.27 1.077 1.13 1.050
TEST-ANCOVA 3.56 1.055 1.24 1.073
P-VALUES-SIMPLE 0.05799 0.11358 0.36145 0.29418
P-VALUES-DIFFERENCE 0.02131 0.05847 0.33487 0.29490
P-VALUES-ANCOVA 0.01134 0.03742 0.30168 0.28182

Table Scenario 7 and 8: n = 100, ρ = 0.70, and β = 5.

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 10.04 2.012 10.33 6.121
BETA-DIFFERENCE 10.07 2.265 10.58 6.578
BETA-ANCOVA 10.03 1.899 10.44 5.648
TEST-SIMPLE 5.07 1.133 1.75 1.039
TEST_DIFFERENCE 4.61 1.062 1.62 1.018
TEST-ANCOVA 5.50 1.161 1.91 1.041
P-VALUES-SIMPLE 0.00067 0.00499 0.20891 0.26155
P-VALUES-DIFFERENCE 0.00088 0.00324 0.22627 0.26307
P-VALUES-ANCOVA 0.00015 0.00153 0.17873 0.24662

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 9.86 1.966 10.12 6.017
BETA-DIFFERENCE 9.87 1.635 10.10 4.712
BETA-ANCOVA 9.85 1.488 10.15 4.267
TEST-SIMPLE 4.98 1.036 1.70 1.033
TEST-DIFFERENCE 6.39 1.181 2.17 1.018
TEST-ANCOVA 6.91 1.179 2.36 1.014
P-VALUES-SIMPLE 0.00069 0.00416 0.19848 0.23299
P-VALUES_DIFFERENCE 7.64E-6 0.00004 0.12490 0.20897
P-VALUES-ANCOVA 2.93E-6 0.00003 0.09195 0.16248

Table Scenario 11 and 12: n = 100, ρ = 0.70, and β = 10.

Table Scenario 9 and 10: n = 100, ρ = 0.40, and β = 10.
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SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 1.97 0.666 2.04 1.971
BETA-DIFFERENCE 1.96 0.752 1.91 2.060
BETA-ANCOVA 1.97 0.627 1.98 1.751
TEST-SIMPLE 3.11 1.055 1.08 1.039
TEST-DIFFERENCE 2.83 1.091 0.92 0.990
TEST-ANCOVA 3.39 1.087 1.14 1.007
P-VALUES-SIMPLE 0.03570 0.09729 0.35508 0.30024
P-VALUES-DIFFERENCE 0.05372 0.13366 0.37632 0.29190
P-VALUES-ANCOVA 0.02632 0.09137 0.34435 0.30417

Table Scenario 13 and 14: n = 1000, ρ = 0.40, and β = 2.

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 1.99 0.627 2.13 1.878
BETA-DIFFERENCE 1.99 0.459 1.96 1.506
BETA-ANCOVA 1.99 0.425 2.01 1.402
TEST-SIMPLE 3.14 0.985 1.12 0.989
TEST-DIFFERENCE 4.08 0.943 1.34 1.029
TEST-ANCOVA 4.41 0.945 1.49 1.037
P-VALUES-SIMPLE 0.02572 0.06895 0.35095 0.30204
P-VALUES-DIFFERENCE 0.00260 0.00817 0.28877 0.28628
P-VALUES-ANCOVA 0.00100 0.00407 0.26459 0.28391

Table Scenario 15 and 16: n = 1000, ρ = 0.70, and β = 2.

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 5.01 0.609 5.04 1.973
BETA-DIFFERENCE 5.02 0.682 4.97 2.263
BETA-ANCOVA 5.01 0.564 5.01 1.843
TEST-SIMPLE 7.92 0.979 2.65 1.036
TEST-DIFFERENCE 7.25 1.003 2.39 1.085
TEST-ANCOVA 8.65 0.999 2.87 1.052
P-VALUES-SIMPLE 8.5E-10 7.33E-9 0.06329 0.14258
P-VALUES-DIFFERENCE 3.93E-8 3.87E-7 0.10024 0.19833
P-VALUES-ANCOVA 5.5E-11 7.6E-10 0.05272 0.14443

Table Scenario 17 and 18: n = 1000, ρ = 0.40, and β = 5.

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 4.96 0.605 5.06 1.832
BETA-DIFFERENCE 4.97 0.443 5.01 1.463
BETA-ANCOVA 4.96 0.409 5.02 1.322
TEST-SIMPLE 7.83 0.977 2.67 0.966
TEST-DIFFERENCE 10.13 0.933 3.41 1.006
TEST-ANCOVA 10.97 0.950 3.71 0.983
P-VALUES-SIMPLE 2.43E-9 2.39E-9 0.05610 0.12928
P-VALUES-DIFFERENCE 5.4E-16 7.9E-15 0.01535 0.05037
P-VALUES-ANCOVA 1.4E-18 0.00000 0.00715 0.02379

Table Scenario 19 and 20: n = 1000, ρ = 0.70, and β = 5.
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DISCUSSION

Under the three parametric models one can get an
unbiased estimator for the difference effect between groups.
When the correlation of the outcome variable at baseline
and follow-up is less than 0.5, the variance of the estimator
of the difference effect under the Simple model is less than
that under the Difference score model. But if the correlation
is bigger than 0.5, the variance of the estimator under the
Difference Score model is less than that under the Simple
model. However, in general the variance of the estimator of
the difference effect under the ANCOVA model is the
smallest.

The Simple model should be used under the belief
that randomization produces balance in the outcome varia-
ble at baseline.

The Difference Score model should be used when
randomization produces an imbalance in the outcome va-
riable for treatment and control group, especially in smaller
studies or also when a "change" variable is the outcome of
interest.

The ANCOVA model is recommended when
randomization produces an imbalance in the baseline value

of the outcome variable for treatment and control group,
especially in smaller studies.

From the simulation approach, if the correlation of
the outcome variable at baseline and follow-up is small, one
can fit either the Simple model or the ANCOVA model. Also,
if this correlation is large one can fit either the Difference
Score model or the ANCOVA model.

The overall recommendation of this paper is the
complementary use of nonparametric methods and
parametric methods for analyzing the data coming from an
experimental study.

SANHUEZA, A.; OTZEN, T.; MANTEROLA, C. &
ARANEDA, N. Métodos estadísticos para análizar un resultado
continuo en estudios experimentales. Int. J. Morphol., 32(1):339-
350, 2014.

RESUMEN: En estudios experimentales, la variable re-
sultado se mide en el momento inicial y luego en diversas ocasio-
nes. De este modo, se habla de mediciones de "línea de base" y
seguimiento respectivamente. Lo interesante de esta materia es
poder determinar si una vez aplicada una intervención, existen di-

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 10.02 0.637 9.80 1.823
BETA-DIFFERENCE 10.04 0.702 9.94 2.131
BETA-ANCOVA 10.03 0.582 9.85 1.727
TEST-SIMPLE 15.88 1.067 5.17 0.978
TEST-DIFFERENCE 14.52 1.047 4.77 1.018
TEST-ANCOVA 17.34 1.061 5.66 1.001
P-VALUES-SIMPLE 0.00000 0.00000 0.00019 0.00144
P-VALUES-DIFFERENCE 0.00000 0.00000 0.00086 0.00784
P-VALUES-ANCOVA 0.00000 0.00000 0.00007 0.00103

Table Scenario 21 and 22: n = 1000, ρ = 0.40, and β = 10.

SD = 10 SD = 30
Mean STD Error Mean STD Error

BETA-SIMPLE 9.96 0.655 10.08 1.858
BETA-DIFFERENCE 9.95 0.471 9.99 1.508
BETA-ANCOVA 9.95 0.441 10.01 1.408
TEST-SIMPLE 15.77 1.085 5.32 0.982
TEST-DIFFERENCE 20.34 1.081 6.80 1.031
TEST-ANCOVA 22.05 1.102 7.39 1.048
P-VALUES-SIMPLE 0.00000 0.00000 0.00014 0.00127
P-VALUES-DIFFERENCE 0.00000 0.00000 7.67E-7 7.11E-6
P-VALUES-ANCOVA 0.00000 0.00000 8.61E-9 5.23E-8

Table Scenario 23 and 24: n = 1000, ρ = 0.70, and β = 10.
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ferencias significativas entre el grupo al que se asignó un trata-
miento de prueba y el grupo de comparación. En este manuscrito
se exponen algunas de las estrategias utilizadas para tal propósito;
las que incluyen un proceso de simulación mediante datos obteni-
dos a partir de un estudio experimental. Tres estrategias
paramétricas y dos no paramétricas se evalúan teniendo en cuenta
sólo una medida de seguimiento. La medida de referencia se in-
corpora en el contexto de estas estrategias.

PALABRAS CLAVE: Estudio experimental; Estudios
de seguimiento; Bioestadística; Estadísticas no-paramétricas.
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